IES Fco Ayala de Granada Sobrantes de 2000 (Modelo 4 Junio) Enunciado Germán-Jesús Rubio Luna Los Exámenes del año 2000 me los ha proporcionado D. José Gallegos Fernández

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida.
- c) En cada ejercicio, parte ó apartado se indica la puntuación máxima que le corresponde.
- d) Puede usar calculadora no programable y no gráfica.
- e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención sin su ayuda. Justifique las respuestas.

OPCION A

EJERCICIO 1.

La región factible de un problema de programación lineal es la intersección del primer cuadrante con los 3 semiplanos definidos por las siguientes inecuaciones:

$$x/10 + y/8 \le 1$$
; $x/5 + y/8 \ge 1$; $x/10 + y/4 \ge 1$

- a) (2 puntos) Dibuje dicha región y determine sus vértices.
- b) (1 punto) Calcule el mínimo de la función objetivo F(x,y) = 4x + 5y en el recinto anterior.

EJERCICIO 2

- a) (1 punto) Calcule la derivada de cada una de las funciones: g(x) = -1/x y $h(x) = x \cdot sen(x)$
- b) (2 puntos) Estudie el crecimiento y decrecimiento de una función cuya función derivada viene dada gráficamente por la recta que pasa por los puntos (-1,0) y (0,1).

EJERCICIO 3

Parte I

En un Instituto se ofertan tres modalidades excluyentes A, B y C y dos idiomas excluyentes, Inglés y Francés. La modalidad A es elegida por un 50% de alumnos, la B por un 30% y la C por un 20%. También se conoce que han elegido Inglés el 80% de los alumnos de la modalidad A, el 90% de la modalidad B y el 75% de la C, habiendo elegido Francés el resto de los alumnos.

- a) (1 punto) ¿Qué porcentaje de estudiantes del Instituto ha elegido Francés?
- b) (1 punto) Si se elige al azar un estudiante de Francés, ¿cuál es la probabilidad de que sea de la modalidad A?

Parte II

La altura de los jóvenes andaluces se distribuye según una ley normal de media desconocida y varianza 25 cm².

Se ha seleccionado una muestra aleatoria y con una confianza del 95% se ha construido un intervalo para la media poblacional cuya amplitud es de 2'45 cm.

- a) (1 punto) ¿Cuál ha sido el tamaño de la muestra seleccionada?
- b) (1 punto) Determine el límite superior y el inferior del intervalo de confianza si la muestra tomada dio una altura media de 170 cm.

german.jss@gmail.com

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida.
- c) En cada ejercicio, parte ó apartado se indica la puntuación máxima que le corresponde.
- d) Puede usar calculadora no programable y no gráfica.
- e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención sin su ayuda. Justifique las respuestas.

OPCION B

EJERCICIO 1.

Se considera el sistema:
$$\begin{cases} x - 9y + 5z = 33 \\ x + 3y - z = -9 \\ x - y + z = 5 \end{cases}$$

- a) (2 puntos) Resuélvalo y clasifíquelo en función del número de soluciones.
- b) (1 punto) Determine si es posible, o no, eliminar una de las ecuaciones, de forma que el sistema que resulte sea equivalente al anterior. Razone la respuesta.

EJERCICIO 2. Dada la función
$$f(x) = \begin{cases} 2x + a & \text{si} & x \le -1 \\ -x^2 + 2 & \text{si} & -1 < x \le 1 \end{cases}$$
 (L indica logaritmo neperiano) $L(x)$ si $x > 1$

- a) (1 punto) Calcule el valor de "a" para que f sea continua en x = -1.
- b) (1 punto) Represente gráficamente la función anterior si a = 3.
- c) (1 punto) Justifique la existencia o no de derivada en los puntos x = -1 y x = 1 para la función obtenida en el apartado anterior.

EJERCICIO 3

Parte I

Sean A y B dos sucesos del mismo espacio muestral tales que p(A) = 0.7, p(B) = 0.6 y $p(A \cup B) = 0.9$.

- a) (1 punto) Justifique si A y B son independientes.
- b) (1 punto) Calcule $p(A/B^C)$ y $p(B/A^C)$; A^C y B^C indican los contrarios de A y B.

Parte II

Se conoce que el número de días de permanencia de los enfermos de un hospital sigue una distribución normal de media 8'1 días y desviación típica 9 días. Se elige, al azar, una muestra de 100 enfermos:

- a) (1 punto) Razone cuál es la distribución de la media muestral.
- b) (1 punto) ¿Cuál es la probabilidad de que la media muestral esté comprendida entre 8 y 10 días?

german.jss@gmail.com 2