MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

CURSO 2008-2009

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida.
- c) En cada ejercicio, parte o apartado se indica la puntuación máxima que le corresponde.
- d) Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos.
- e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención sin su ayuda. Justifique las respuestas.

OPCIÓN A

EJERCICIO 1 (3 puntos) Sean las matrices:

$$A = \begin{pmatrix} -1 & 4 & -1 \\ 0 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} -2 & 1 & 3 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix} \quad y \quad C = \begin{pmatrix} 5 & -2 & -6 \\ 0 & -3 & 2 \\ -2 & 0 & -1 \end{pmatrix}.$$

Determine X en la ecuación matricial X.A - 2B = C

EJERCICIO 2

Sea la función $f(x) = \frac{x-1}{2x-1}$.

- a) (1 punto) Halle la ecuación de la recta tangente a la gráfica de la función f en el punto (0,1).
- b) (1 punto) Estudie la monotonía de f.
- c) (1 punto) Halle las asíntotas, los puntos de corte con los ejes y represente gráficamente la función.

EJERCICIO 3

Parte I

Se consideran dos sucesos A y B, asociados a un espacio muestral, tales que

$$P(A \cup B) = 1$$
, $P(A \cap B) = 0.3$ y $P(A/B) = 0.6$.

- a) (1'5 puntos) Halle las probabilidades de los sucesos A y B.
- b) (0'5 puntos) Determine si el suceso B es independiente del suceso A.

Parte II

El gasto que hacen las familias españolas en regalos de Navidad sigue una ley Normal de media desconocida y desviación típica 84 euros. Para estimar esta media se seleccionó una muestra aleatoria y se obtuvo el intervalo de confianza (509'41; 539'79), con un nivel de confianza del 97%.

- a) (0'5 puntos) ¿Cuál ha sido la media de la muestra escogida?
- b) (1'5 puntos) ¿Qué tamaño tenía la muestra?

OPCIÓN B

EJERCICIO 1

a) (1'25 puntos) Plantee, sin resolver, el siguiente problema de programación lineal: "Una empresa fabrica camisas de dos tipos, A y B. El beneficio que obtiene es de 8 euros por cada camisa que fabrica del tipo A, y de 6 euros por cada una del tipo B. La empresa puede fabricar, como máximo, 100000 camisas, y las del tipo B han de suponer, al menos, el 60% del total. ¿Cuántas camisas debe fabricar de cada tipo para obtener el máximo beneficio?"

b) (1'75 puntos) Represente la región definida por las inecuaciones:

$$y \le x$$
, $y + 2x \le 6$, $x \le 4y + 3$.

Calcule el máximo de F(x,y) = y + 2x en la región anterior e indique dónde se alcanza.

EJERCICIO 2

Sea la función f: R \rightarrow R definida mediante f(x) = $\begin{cases} e^{-x} & \text{si} \quad x \leq 0 \\ x^3 - x + 1 & \text{si} \quad x > 0 \end{cases}$

- a) (1 punto) ¿Es f continua en x = 0? ¿Es continua en su dominio?
- b) (1 punto) ¿Es f derivable en x = 0? ¿Es derivable en su dominio?
- c) (1 punto) Halle la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = 1.

EJERCICIO 3

Parte I

El 70% de los visitantes de un museo son españoles. El 49% son españoles y mayores de edad. De los que no son españoles, el 40% son menores de edad.

- a) (1 punto) Si se escoge, al azar, un visitante de este museo, ¿cuál es la probabilidad de que sea mayor de edad?
- b) (1 punto) Se ha elegido, aleatoriamente, un visitante de este museo y resulta que es menor de edad, ¿cuál es la probabilidad de que no sea español?

Parte II

Los jóvenes andaluces duermen un número de horas diarias que se distribuye según una ley Normal de media desconocida, μ, y desviación típica 2 horas. A partir de una muestra de 64 jóvenes se ha obtenido una media de 7 horas.

- a) (1 punto) Halle un intervalo de confianza, al 97%, para la media poblacional μ.
- b) (1 punto) Manteniendo la misma confianza, ¿cuál debe ser el tamaño mínimo de la muestra para estimar la media de horas de sueño, cometiendo un error máximo de 0'25 horas?